
Sharma International Journal of Theoretical & Applied Sciences, 11(2): 41-47(2019) 41

ISSN No. (Print): 0975-1718

ISSN No. (Online): 2249-3247

Design and Mathematical Structure of Cryptographic Hash Function SHA-512

Arun Kumar Sharma

Department of Computer Science & Engineering,

NIT Hamirpur, India

(Corresponding author: Arun Kumar Sharma)

(Received 30 September, 2019, accepted 19 November, 2019)

 (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Cryptography is an essential part of information and communication technology. Security of
information is provided with cryptography. Cryptography forms the basis in Security of electronic commerce,
computer passwords and ATM cards. In cryptography, strong security is ensured by strong algorithm of
mathematics hence assuring safety of the data to wide range of users. In a properly designed cryptographic
scheme, the security of the scheme is dependent on the algorithm used. In the present paper, we discuss the
design and its mathematical processing of data at various stages of SHA family in Cryptographic Hash
functions particularly SHA-512. Further, we illustrate the mathematical processing of SHA-512.

Keywords: Cryptography, Hash Functions, E-commerce, Secure Hash Algorithm, Security, SHA-512.

I. INTRODUCTION

We are living in the information age. The information

storage and exchange become electronic. The channels

through which the commutation of data takes place is not

secure. The information being transmitted is vulnerable

to various attacks. Anyone can easily read the data that

commutes over the channels which are not safe.

Therefore, information security has become most

challenging aspects of communication. Cryptography

helps us to secure our data from hackers. Cryptography

changes our data from original form to the form that is

not easily recognizable and that data commutes over
channels which are not safe and if someone hacks our data

then he cannot understand what is written. The origin of

the word Cryptography find its mention in the Greek

words: Kryptos and Graphein, Kryptos meaning

“hidden” or “secret” and Graphein meaning “writing”.

Hence, the cryptography is defined as the art and science

of secret writing or hidden writing. The techniques used

in cryptography changes the original message at sender

end to unreadable form and transmit this over insecure

channels. At the receiver end again data changes to

original message with the help of cryptographic
techniques [2, 5, 10, 14, 15, 16]. Hence, our data

securely travels over insecure channels. The first design

of cryptographic hash functions appeared in late 1970s.

A wide range of proposals appeared in 1980s. During the

1990s, there was a great growth in the number of hash

functions in a very brief period of time, but most of the

proposals had security flaws which were identical. MD5

and SHA-1 were used in a large number of applications,

resulting in 000000000000000 name “Swiss army knife”

of cryptography. Undermining the importance of hash

functions, very few efforts were spent to study the

formal definitions and foundations corresponding to

Hash Functions. In 2004, Wang et al. efforts made

Cryptanalysis reach a point where finding collision

for MD5 became very easy.

II. RELATED WORK

For SHA-1, a considerable reduction corresponding to

the security margin was achieved. The breakthrough

has resulted in a wide range of research, further

corresponding to foundational research and new

construction [12, 13, 17].

A. SHA-1

The development of SHA-1 was done keeping in mind

the Capstone project of the U.S. Government. The

original specification is now mainly known as SHA-0

of the algorithm which was published in 1993 under

the heading Secure Hash Standard by the U.S.

Government Standard agency NIST (National Institute

of Standard and Technology). It was revoked by NSA

shortly after its publication and replaced by a revised

version published in 1995 commonly known as

SHA-1. Collisions against the full SHA-1 algorithm

can be generated using shattered attacks and further

resulting in broken hash function. SHA-1 produces a

hash digest of 160 bits(20bytes).

B. SHA-2

Secure Hash Algorithm-2 (SHA-2) is a unique

collection of cryptographic hash functions designed

by the National Security Agency (NSA) of the United

States, that was firstly published in 2001.

Merkle-Damgard structure forms the basis of its

International Journal of Theoretical & Applied Sciences, 11(2): 41-47(2019)

Sharma International Journal of Theoretical & Applied Sciences, 11(2): 41-47(2019) 42

construction. SHA-2 mainly contains two Hash

Algorithms: SHA-256 and SHA-512. SHA-224 is a

variant of SHA-256with different starting values and

truncated output.

SHA-384, the lesser known SHA-512/224 and

SHA-512/256 all form the variation of SHA-512.

SHA-512 is much safer than SHA-256 and is usually

faster than SHA256. The output in bits is given by the
extension to the “SHA” name.

SHA-224-Output 224 bits (28bytes).

SHA-256-Output 256 bits (32bytes).

SHA-384-Output 384 bits (48bytes).

SHA-512-Output 512 bits (64bytes).

C. SHA-3

The development of Secure Hash Algorithm-3 (SHA-3)

took place on August 5, 2015 by NIST. SHA-3 is a

subset of the crypto-graphic primitive family called

keccak. The keccak algorithm is the work of Guido

Bertoni, Joan Daemen, Michael Peeters and Gills Van

Assche. Sponge Construction lays the basis of keccak

which can also be used to create other cryptographic

primitive similar to stream ciphers. SHA-3 offers same

output size as SHA-2 that is of 224,256,384 and 512

bits, see [4, 9].

Algorithm

Size of
Message
Digest

Message
Block Size

Collision

SHA-0 160 512 Yes
SHA-1 160 512 Yes
SHA-256/2
24

256/224 512 No

SHA-512/3
24

512/324 1024 No

SHA-512 is one of the most secure hash functions

available today, see [1, 3, 6]. Operation is much faster

than any other member of SHA-Family. It forms the

latest version, has more complex structure than, and the

corresponding message digest is longest. Though there

are quite a few types of attacks on SHA, none of them

are completely successful.

Actually, it is not so easy to decrypt the output from a

hash function. There are different types of attacks

employed to decrypt SHA-512. Following are the most

famous one.

1) Preimage Attack:

It defines a message that has a specific Hash

value.

2) Collision Attack:

Birthday Attack, is an example of collision
attack. It takes o(2n/2) times where, n is length of
the output of hash function SHA-512. Assume
that for 32 byte input, the time taken by machine
is 0.22s(2−2s) for 65536(= 216) computations.
So, 2256 computations would be completed in
2240

.216 computations which would take

2240∗ 2−2 = 2238 1072
s 3.17 ∗ 1064

Y ears.

3) Second Preimage Attack:

SHA-1 which employ 256 bits is considered to

be broken, since a collision was identified at 269

operations much less than 280. None of the above

attack can crack a hash generated by SHA-2

algorithms with the best of the hardware

available on earth. So, cheers as SHA-512 is still

secure and will be.

III. DESIGN OF SHA-512

The SHA-512 algorithm uses one- way hash function

created by United States National Security Agency

(NSA).

A one-way hash function also called as message

summary or compression function denotes a

mathematical function that takes the entering variable

length and change it to a binary sequence of fixed

length. The one-way hash function is designated in such

a manner that it is difficult to change the order of the

process. The hash function is good if it is difficult to find

two strings that will produce similar hash value.

A message which consists maximum length of bits is

taken as input by the algorithm and an output

comprising of a 512-bit message digest is produced. The

processing of input is done in 1024- bits blocks. The

steps used in algorithm are as follows [7, 8, 11, 14].

Algorithm of SHA-512

1) Step-1: Append the bits with padding

Let us take the message “M”. Convert the characters of

the message into ASCII codes. Convert the characters of

the message from ASCII codes to binary. The original

message to be hashed is padded with binary digits of 1

and 0’s so that its length becomes congruent to 896

modulo 1024. The padding is usually followed by

many 0’s.

2) Step-2: Append Length Field

The appending of the block of 128-bits is done to the

message. This block is treated as an unsigned 128-bit

integer and contains the length of the original message

(before the padding).

3) Step-3: Initialize Hash Buffers

The intermediate and final results corresponding to the

hash function are held by 512-bit buffer. The buffer can

be represented as eight 64-bit registers.

4) Step-4: Words and its expansion

SHA-512 operates on words; its orientation or

inclination is towards word. A word contains 64-bits.

This further states that after addition of padding and

length field is done to original message each blocks of

message comprises sixteen 64-bit words. 16 words, each

of 64-bits=512- bits.

5) Step-5: Process message in 1024-bit blocks

Sharma International Journal of Theoretical & Applied Sciences, 11(2): 41-47(2019) 43

The heart of the algorithm is its compression function.80

constants are used one in each step. 80 words are also

used one in each step. All these are mixed together and

then a new set of eight buffers is created. The buffers

created after first round becomes the initial buffers for

second round. And the buffers created after second round

becomes the initial buffers for third round and so on. At

the end of processing the addition of initial buffers is

done with values created from step 79. The last operation

is called the final adding.

6) Step-6: Final Adding

After processing the data 80 times (80 rounds) as

mentioned above, we get the final output as below:

A = a0+a79

B = b0+b79

C = c0+c79

D = d0+d79

E = e0+e79

F = f0+f79

G = g0+g79

H = h0+h79

Therefore, the last output of 512-bits of the hash function
is “ABCDEFGH”. It is known as message digest.
Further, we change this binary message into
hexadecimal form, which gives 128 hexadecimal
characters.

IV. ILLUSTRATION

SHA-512 emphasizes that the initial message length
should be less than 2128 -bits. A digest of 512-bits from a
multiple-block message is created. The length of each
block is 1024-bits. Now let us discuss the mechanism of
SHA-512 algorithm.

1) Step-1

Let us take the message (M), “Cryptography” and

convert the characters of the message into ASCII, then

converting each character of the message from ASCII

codes to binary.

Thus, the binary form of the message is

M=01000011011100100111100101110000011101000110

11110110011101110010011000010111000001101000011

11001

The message (M) is of 96-bits. Therefore, append bit ‘1’

in the extreme right and remaining zeros up to the

896-bit message. Therefore,

M=010000110111001001111001011100000111010001

101111011001110111001001100001011100000110100

0011110011000…………800 times 0

2) Step-2

Since the original message (M) has the length of
“96-bits”, that is M = 9610.
Then, its binary representation is
9610 = 011000002. This is short of 128-bits. Therefore,
append zeros extreme left to make 128-bits. Thus,

128-bit string is as follows:
00

00
000000000000000000000000000000001100000

Now, we append this string with the message string

obtained above and we get the message string of

1024-bits.

3) Step-3

512-bit buffers are used to hold intermediate and final
result of the hash function. The buffers can be
represented as eight 64-bit registers (a0, b0, c0, d0, e0, f0,

g0, h0). These registers are initialized to the following
64-bit integers (hexadecimal values).
a0 = 6A09E667F3BCC908
b0 = BB67AE8584CAA73B
c0 = 3C6EF372FE94F82B
d0 = A54FF53A5F1D36F1
e0 = 510E527FADE682D1
f0 = 9B05688C2B3E6C1F
g0 = 1F83D9ABFB41BD6B
h0 = 5BE0CD19137E2179

4) Step-4

Now, dividing 1024-bits message into 16 words each of
64-bits starting from w0 to w15as

w0=01000011011100100111100101100000011101000

11011110110011101110010

w1=01100001011100000110100001111001100000000

00000000000000000000000 and so on.

Now, next 64 words are calculated from previous

generated words as
 �� = ����� +
���(����� + ���� +
���(�����

5) Step-5
Now we proceed towards compression function.
Round-1
We have discussed the initial buffers in Step-3. Let us

convert the values of buffers from Hexadecimal to

binary starting from a0 to h0 where a�= �0110101000001001111001100110011111110011101111001100100100001000 �

b�= �1011101101100111101011101000010110000100110010101010011100111011 �

and so on.

Now,
T� = h� + Ch(e�, f�, g�� + �(e�� +

��

�
w� + K�

where, Ch(e�, f�, g�� = (e�˄f� �⨁(−e�˄g��
that is,

Sharma International Journal of Theoretical & Applied Sciences, 11(2): 41-47(2019) 44

Ch(e� , f�, g��
= �0001111110000101110010011000110001111011001001110011110100111011 �

and

�(e�� = ROTR�&
��

�
(e��⨁ROTR�'(e��⨁ROTR&�(e��

Now, K0=428A2F98D728AE22

(�= �0100001010001010001011111001100011010111001010001010111000100010 �
 ��= �0100001101110010011110010110000001110100011011110110011101110010 �
Therefore,

)�= �1110111001000101010111101010100110000001001010001111000100101110 �
Now,

T = �(a�� +��

�
Maj(a� + b� + c��

where,

�(a����

�
= (e��ROTR'(a��⨁ROTR-&(a��⨁ROTR-.(a��

�(/����

�= �1010000010001100010011011011010101101010101011001000000011000010 �
And

0/1(/�, 2� , 3�� = (/�˄2� �⨁(/�˄3��⨁(2�˄3��

0/1(/�, 2� , 3��
= �0011101001101111111001100110011111100110100000001010000000101000 �

Therefore,

)= �1101101011111100001101000001110101010001011011101100010111101010 �
Now,

/� =)� +)
that is,

/�= �1100100101000001100100101100011011010010100101111100101100011000 �
2�= �0110101000001001111001100110011111110011101111001100100100001000 �
3�= �1011101101100111101011101000010110000100110010101010011100111011 �
4�= �0011110001101110111100110111001011101111100101001111100000101000 �
5�= �1001001110010101010000111110001111100000010001100010100000011111 �
6�= �0101000100001110010100100111111110101101111001101000001011010001 �
7�= �1001101100000101011010001000110000101011001111100110110000011111 �
ℎ�= �0001111110000011110110011010101111111011010000011011110101101011 �

Round-2

Buffers generated in Round-1 are initial value buffers for

Round-2. Let us calculate round functions to calculate

buffers of Round-2.

Now,
)� = ℎ� + 9ℎ(5�, 6� , 7�� + �(5�� +��

:;�
�� + (�

where, 9ℎ(5�, 6� , 7�� = (5�˄6� �⨁(−5�˄7��
9ℎ(5�, 6� , 7��
= �0001100100000100011010100110111110101011011111100100010000010001 �

and,

�(e�� = ROTR�&
��

�
(e��⨁ROTR�'(e��⨁ROTR&�(e��

�(e����

�= �1000101110011000010110101001001101001011011110001011000011000011 �
w�= �011000010111000001101000011110011000000000000000000000000000000 �

K1=3956C25BF348B538

Sharma International Journal of Theoretical & Applied Sciences, 11(2): 41-47(2019) 45

K�= �0011100101010110110000100101101111110011010010001011010100111000 �
Therefore,
T�= �0000101011000110101111001000101010011110111100000000011101110111 �

Now,
T = �(a�� +��

�
Maj(a� + b� + c��

where,

�(a�� = ROTR'
��

�
(a��⨁ROTR-&(a��⨁ROTR-.(a��

�(a����

�= �0001000001111100011011001101110010010111110110111100101111111001 �
and

Maj(a� , b� , c��
= �1110101101000001101001101100011111010010100111101100101100011000 �

Therefore,

T= �1111101110111110000100111010010001101010011110101001011100010001 �
Now,

a = T� + T
that is

a= �0001000001111100011011001101110010010111110110111100101111111001 �
b= �1100100101000001100100101100011011010010100101111100101100011000 �
c= �0110101000001001111001100110011111110011101111001100100100001000 �
d= �1011101101100111101011101000010110000100110010101010011100111011 �

and

e = d� + T�

e= �0100011100110101101011111111110110001110100001001111111110011111 �
f= �1001001110010101010000111110001111100000010001100010100000011111 �
g= �0101000100001110010100100111111110101101111001101000001011010001 �
h= �1001101100000101011010001000110000101011001111100110110000011111 �

Similarly, up to the round-79 the values of buffers after

round-79 are as

/�.= �1101001110110001001110111011110011110001010100111011111001111000 �
2�.= �0110100100000011000111000100100001100011001001001111101111110101 �
3�.= �0000111110010011010010001101001110001010101101100110001100100101 �
4�.= �1010011011101010110010100101110011110001011011010111101000100001 �
5�.= �1011100010100111000100001101101011001111100011110001011110101011 �
6�.= �0010000110100110111001011101110001010110000000111001001010111100 �
7�.= �0111010110101100010101110010011101101001100011010100000111101001 �
ℎ�.= �0111110111010111001010100010111100000000011001001010100010100111 �

I = /� + /�.
J = 2� + 2�.
9 = 3� + 3�.
K = 4� + 4�.
L = 5� + 5�.
M = 6� + 6�.
N = 7� + 7�.
O = ℎ� + ℎ�.

Sharma International Journal of Theoretical & Applied Sciences, 11(2): 41-47(2019) 46

Therefore,

I
= �0001110110111011001000100010010011100101000100001000101110000000 �
J
= �0010010001101010110010101100110101100111101011111010001100110000 �
9
= �0100110000000010001100110100011001111010010010100101101101001101 �
K
= �0011110000111010101011111001011101010000100010101011000100010010 �
L
= �0000100010110101011000110101101001111101011101011001101001111100 �
M
= �1010110010101100010011100110100010000001010000011101111011011011 �
N
= �1001010100110000001100001111001101100100110011101111111101010100 �
O
= �1101100110110111111100110100100000010011111000101100101000100000 �

IJ9KLMNO

=

P
QQ
QQ
QQ
QQ
R

00011101101110110010001000100100111001010001000010001011100000000010010001101010110010101100110101100111101011111010001100110000010011000000001000111100010001100111101001001010010110110100110101001100001110101010111110010111010100001000101010110001000100100000100010110101011000110101101001111101011101011001101001111100101011001010110001001110011010001000000101000001110111101101101110010101001100000011000011110011011001001100111011111111010101001101100110110111111101110100100000010011111000101100101000100000 S
TT
TT
TT
TT
U

Therefore, last output is of 512-bits. Converting binary

Hexadecimal, we get

A=1dbb2224e5108b80

B=246acacd67afa330

C=4c023c467a4a5b4d

D=3c3aaf97508ab112

E=08b5635a7d759a7c

F=acac4e688141dedb

G=953030f364ceff54

H=d9b7f34813e2ca20

Therefore, message digest has 128 characters as

1dbb2224e5108b80246acacd67afa3304c023c467a4a5

b4d3c3aaf97508ab11208b5635a7d759a7cacac4e6881

41dedb953030f364cef54d9b7f34813e2ca20.

V. CONCLUSION

A cryptographic hash function is a process to produce a
fixed size output of enciphered text from the text having

variable size. We discussed the various cryptographic

hash functions and particularly the design of SHA-512.

Also, we explained the processing of flow of data in

SHA-512 with the help of an illustration.

REFERENCES

[1]. Dobraunig, C., Eichlseder, M., & Mendel, F. (2015,

November). Analysis of SHA-512/224 and

SHA-512/256. In International Conference on the

Theory and Application of Cryptology and Information

Security (pp. 612-630). Springer, Berlin, Heidelberg.

[2]. Forouzan, B. A., & Mukhopadhyay, D.
(2015). Cryptography and network security. Mc Graw

Hill Education (India) Private Limited.

[3]. Grembowski, T., Lien, R., Gaj, K., Nguyen, N.,

Bellows, P., Flidr, J., ... & Schott, B. (2002, September).

Comparative analysis of the hardware implementations

of hash functions SHA-1 and SHA-512. In International

Conference on Information Security (pp. 75-89).

Springer, Berlin, Heidelberg.

[4]. Handschuh, H., Knudsen, L. R., & Robshaw, M. J.

(2001, April). Analysis of SHA-1 in encryption mode.

In Cryptographers’ Track at the RSA Conference (pp.
70-83). Springer, Berlin, Heidelberg.

[5]. Hłobaż, A. (2019, October). Statistical Analysis of

Enhanced SDEx Encryption Method Based on SHA-256

Hash Function. In 2019 IEEE 44th Conference on Local

Computer Networks (LCN) (pp. 238-241). IEEE.

[6]. Lee, S. H., & Shin, K. W. (2018, January). An

efficient implementation of SHA processor including

three hash algorithms (SHA-512, SHA-512/224,

SHA-512/256). In 2018 International Conference on

Electronics, Information, and Communication

(ICEIC) (pp. 1-4). IEEE.

[7]. Menezes Alfred, J., van Oorschot Paul, C., &
Vanstone Scott, A. (1996). Handbook of applied

cryptography.

[8]. Paar, C., &Pelzl, J. (2009). Understanding

cryptography: a textbook for students and practitioners.

Springer Science & Business Media.

[9]. Preneel, B., Govaerts, R., &Vandewalle, J.

(1989). Cryptographically secure hash functions: an

overview. In: ESAT Internal Report, KU Leuven.

[10]. Schneier, B., & Kelsey, J. (1998, January).

Cryptographic support for secure logs on untrusted

machines. In USENIX Security Symposium (Vol. 98, pp.
53-62).

Sharma International Journal of Theoretical & Applied Sciences, 11(2): 41-47(2019) 47

[11]. Seberry, J., & Pieprzyk, J. (1989). Cryptography:

an introduction to computer security. Prentice-Hall, Inc.

[12]. Sharma, A. K. (2018). Content-Based Filtering in

Movie Recommendation. International Journal of

Electrical, Electronics and Computer Engineering, 7(2):

106-109.
[13]. Sharma, A. K. (2019). Safety Application in

Android. International Journal on Emerging

Technologies, 10(1): 234-238.

[14]. Stallings, W. (2006). Cryptography and network

security, 4/E. Pearson Education India.

[15]. Stinson, D. R., & Paterson, M. (2018).

Cryptography: theory and practice. CRC press.

[16]. Sun, W., Guo, H., He, H., & Dai, Z. (2007,

October). Design and optimized implementation of the
SHA-2 (256, 384, 512) hash algorithms. In 2007 7th

International Conference on ASIC (pp. 858-861). IEEE.

[17]. Xiaoyun, W. (2005). Finding collisions in the full

SHA-1. In CRYPTO 2005 (pp. 17-36).

